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Summary. The application we target in this paper is the registration of pre-operative
Magnetic Resonance Imaging with the scans acquired intra-operatively during image-
guided neurosurgery. The objective of this application is improved tracking of tumor
boundaries and surrounding brain structures during open skull tumor resection. We
focus on a validated, physics-based non-rigid registration approach, which has been
used in clinical studies for the last three years. This approach requires tetrahedral
tessellation of the brain volume for biomechanical model construction. The analysis
of the requirements and available methods to construct such a discretization is the
objective of our paper.

The paper presents a number of practical contributions. First, we survey the pro-
posed approaches to tetrahedral mesh generation from medical image data. Second, we
analyze the application-specific requirements to mesh generation. Third, we describe
an end-to-end procedure of tetrahedral meshing for this application using off-the-shelf
non-commercial software. Finally, we compare the performance of the considered mesh
generation tools in the application context using generic and application-specific quan-
titative measures.

1 Introduction

Mesh generation for medical imaging applications has been attracting a lot of
attention in the mesh generation community. Finite Element Method (FEM) is
essential in modeling tissue deformation for these applications, therefore neces-
sitating research and development of new mesh generation methods and tools.
The existing imaging modalities, such as Magnetic Resonance Imaging (MRI),
provide only limited knowledge about the internal organs. The lack of precise
geometric models and the need to construct volume tessellations from the im-
age data is a very practical limitation, which complicates the use of existing
off-the-shelf meshing tools. Application-specific requirements make the problem
even more challenging. In practice, there is no single widely accepted method to
address the mesh generation needs of all applications.

In this paper we focus on tetrahedral mesh generation for physics-based Non-
Rigid Registration (NRR) of brain MRI during Image-Guided Neurosurgery
(IGNS). Specifically, we focus on the NRR approach developed by Clatz et al. [1],
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and subsequently validated in the clinical setting by Archip et al. [2]. The method
has been studied at Brigham and Women’s Hospital (Harvard Medical School,
Boston) for the last three years.

The main goal in neurosurgery is maximum removal of the tumor tissue with
the minimum damage to the healthy brain structures. It is very difficult to iden-
tify boundaries of certain tumors, e.g., gliomas, with the naked eye. Instead,
pre-operative imaging is typically used to precisely locate the tumor, and the
neighboring life-critical structures. Brain shift is often unavoidable during the
tumor resection, making the pre-operative images invalid. Intra-operative im-
ages acquired periodically during the tumor resection have lower quality, and
usually cannot substitute the pre-operative data. NRR is used to align the pre-
operative MRI with the intra-operative scans. The specific NRR method we
study uses a patient-specific bio-mechanical model to facilitate the brain shift
estimation. Tetrahedral tessellation of the brain volume (more specifically, skull
Intra-Cranial Cavity (ICC)) is essential for this application.

Our paper is the continuation of an earlier study [3]. We consider the com-
plete process of mesh generation from the segmented image, and discuss specific
application requirements derived from the established registration method. Our
contributions are the summary of the state of the art methods for constructing
tetrahedral meshes from images, and a practical evaluation of the existing off-
the-shelf meshing tools. Our evaluation is based on the number of qualitative
and quantitative metrics, which allow to compare the studied methods in the
context of the FEM computations that facilitate IGNS.

2 Physics-Based Non-rigid Registration of Brain MRI

2.1 Formulation

The objective of image registration is to determine the transformation that aligns
features in one (floating) image with the features in another (target) image. Im-
age registration is a fundamental problem in medical image processing. The
reader is referred to the survey by Hill et al. [4] for a thorough review on this
topic. Non-rigid image registration is used when the imaged structure is subject
to a non-affine transformation. Image registration methods are usually tailored
to a specific clinical application. The clinical application we target is IGNS fa-
cilitated by a physics-based NRR approach.

The NRR method in [1] consists of the following steps. First, a sparse set of
mathematical landmarks, which we call registration points , is identified within
the pre-operative image of the brain volume. Once the intra-operative image is
available, the time-critical part of the computation is initiated. The deformation
is estimated at each registration point using block matching between the pre- and
intra-operative images (in the context of registration, these are the floating and
target images, respectively). Block matching results inherently contain incorrect
matches (outliers). Because of outliers, the deformation field cannot be derived
by interpolating displacements at the registration points. Mechanical energy of
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the deforming mesh is used to regularize the displacements, i.e., smooth the
impact of outliers on the solution:

W = (HU−D)TS(HU−D) + UT KU.

Here U is the vector of displacements at the mesh nodes, K is the stiffness
matrix [5], H is the interpolation matrix from the tetrahedra vertices to the
registration points inside a tetrahedron, D is the vector of displacements recov-
ered at the registration points, and S is the block-diagonal positive semi-definite
matrix which captures confidence in the corresponding entry of D [1].

The outliers are found by iteratively comparing the displacements at the reg-
istration points with those interpolated from the mesh vertices, and discarding
the matches with the largest error magnitude. The displacements at the mesh
vertices are estimated using the following formulation:

F0 = 0, Ui = [HTSiH + K]−1[HTSiD + Fi−1], Fi = KUi. (1)

During each iteration, the registration points are ordered by the absolute value
of the error ‖Di−HUi‖ weighted by the 3× 3 image structure tensor Ti at the
registration point. The weight is used because block matching can only recover
displacements in the directions orthogonal to the edges in the image [1]. Outlier
registration points are selected as a pre-defined, e.g., 5%, number of registration
points with the largest error magnitude.

2.2 Finite Element Mesh Generation

Tetrahedral mesh has a dual role in the formulation. First, it is used to find the
stiffness matrix in the mechanical energy component. Second, it allows to regu-
larize, or smooth, the displacements recovered by block matching locally within
the mesh vertex neighborhood. The displacement recovered at each of the reg-
istration points within the mesh vertex cell complex affects the displacement at
the corresponding mesh vertex. Therefore, it is important to maintain the em-
pirically obtained ratio between the number of mesh vertices and the number of
registration points under 0.1 (at least 10 registration points per mesh vertex) [1].
Ideally, this ratio should be maintained within each mesh vertex cell complex.
We define the cell complex as a set of mesh tetrahedra incident on a mesh k-
cell, e.g., mesh vertex is a 0-cell, and mesh edge 1-cell. The matrix HTSH has
a non-zero 3 × 3 entry for each mesh vertex and edge with the cell complexes
containing registration points. The corresponding sub-matrices can be expressed
as the sum over the registration points in a cell. For example, the diagonal 3× 3
sub-matrix that corresponds to the mesh vertex vi can be calculated as the
following summation over the registration points in the cell complex S of vi:

[HTSH]i =
∑

∀T ∈S(vi)

∑
∀k∈T

hT
vi

(k)2
tr(K)
np

c(k)T(k). (2)

Here, hT
vi

(k) is the barycentric coordinate of the kth registration point with
respect to vi in the containing tetrahedron T , n is the number of mesh vertices,
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p is the number of the registration points, c(k) is the correlation coefficient from
block matching, and T(k) is the image structure tensor at k.

The result of non-rigid registration is a deformation field, which defines de-
formation vector at each point in the image. That vector is computed by inter-
polating the displacements at the mesh vertices after the last iteration [5]:

∀x ∈ T : u(x) =
3∑

j=0

hT
vj

(x)u(vi). (3)

Note that the iterative procedure in Equation 1 requires solving the linear
system of equations at each iteration within the time-critical part of the com-
putation. The size of this system depends on the number of degrees of freedom
in the mesh model. Therefore, it is important to minimize the size of the mesh
as much as possible without sacrificing the accuracy of the solution.

2.3 Application-Specific Requirements to Mesh Generation

Based on the registration formulation, we can derive the following application-
specific requirements to mesh generation:

R1 Equi-distribution of the registration points w.r.t. mesh vertex cells: small
number of registration points (e.g., less than 10, but greater than 0) within
the vertex cell complex makes the formulation more sensitive to outliers and
introduces additional displacement error [1].

R2 Minimization of the approximation error at registration points : error of the
displacements recovered at registration points can be reduced locally by
using smaller mesh elements [6].

R3 Prevention of tetrahedron inversion during mesh deformation : while the in-
terpolation error shown in Equation 3 does not depend on the tetrahedron
shape, inversion or collapse of a tetrahedron will result in an unrealistic de-
formation field, e.g., points inside the different tetrahedra can map to the
same image location. We can attempt to remedy this problem by adjusting
element size locally according to the expected deformation.

Adaptive refinement of the mesh following the simulation, if necessary, is
outside the scope of this paper.

3 Image-to-Mesh Conversion

3.1 Formulation and Generic Requirements to Mesh Generation

Following the notation of Hill et al. [4], we define the image domain Ω as the
overlap between the bounded continuous set Ω̃ (image field of view) and the
infinite discrete sampling grid Γς , characterized by the anisotropic sample spac-
ing ς = (ςx, ςy, ςz), Ω = Ω̃ ∩ Γς . Voxel is an orthogonal parallelepiped-shaped
volume element centered at the sampling grid point. Its dimensions are defined
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by the grid spacing ς. For the considered application, image A is a mapping
of points in the image domain R

3 to R, A : x ∈ Ω �→ A(x). In this paper we
are mostly concerned with the medical applications that provide a segmentation
of the object of interest. The output of segmentation is a binary image, i.e.,
A(x) ∈ {0, 1}, with the subset {x ∈ Ω|A(x) = 1} corresponding to the voxels
located inside the object. Let Σ be the surface that separates zero and non-zero
voxels of this binary image. The surface Σ is defined implicitly, as we only know
whether a given voxel is inside or outside the object.

The objective of mesh generation for FEM computations from the binary
image data is to construct a conforming tetrahedral mesh M = (V , T ), which
satisfies the following generic requirements :

R4 The mesh boundary (triangulation) should be close to Σ.
R5 Mesh size should be minimized to reduce the computational costs.
R6 Mesh elements should not have small angles [6].

These generic requirements have been in the focus of the mesh generation com-
munity for decades. The application-specific requirements are usually addressed
by constructing a customized mesh sizing function, or developing customized
mesh generation methods. In this paper we explore the first approach. There-
fore, the ability to accept a user-defined sizing function is an essential feature
for a mesh generation method to be considered for our application.

3.2 Related Work

An intrinsic difficulty of generating meshes from the binary image data is the
processing and recovery of the object geometry. General-purpose mesh gener-
ators (for solid and geometric modeling applications) expect that the object
boundary is parametrized, i.e., it is defined by means of constructive solid ge-
ometry primitives, or explicitly (e.g., through the boundary discretization, as
a collection of patches). Therefore, in order to convert the binary image into
a tetrahedral mesh, one can either (1) recover the parametrized object surface
followed by a conventional mesh generation technique, or (2) use a mesh genera-
tion method, which operates directly on the binary image. The reader is referred
to the survey by Owen [7] for a discussion of the classical approaches to vol-
ume meshing. Next, we overview some of the methods designed to construct
tetrahedral discretizations directly from the image data.

A step which precedes geometry processing is segmentation of the structure of
interest from the multivalued image. Segmentation is a fundamental problem in
medical image processing [8], and is outside the scope of this paper. We assume
that the segmented ICC is provided by the application.

The objective of the surface recovery step is to construct an explicit represen-
tation of Σ. The methods which recover piecewise-linear surface approximation
and provide surface triangulation are most practical, as this is the input most
mesh generation methods expect. It is desired for the triangulated surface (1) to
have the same topology as Σ, (2) to be sufficiently close to Σ, and (3) to have
guaranteed quality of the triangles in the surface discretization, as defined by
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Fig. 1. A hierarchy of the studied approaches to mesh generation

the triangle aspect ratio, while (4) minimizing the number of triangles. The first
two requirements are important for the accurate representation of the object,
while the other two are essential in order to satisfy the generic requirements to
volume mesh generation.

A straightforward approach to recover iso-surface is by means of the Marching
Cubes (MC) algorithm [9]. However, the original version of this algorithm may
produce a triangulation with topological problems. Another practical problem
is the inability of the MC algorithm to generate adaptive surface triangulations.
The surface produced by MC has “jagged” artifacts because of voxel sampling,
which may create subsequent problems with the simulation [10]. Surface mesh
simplification, or remeshing, is often a necessary post-processing step when MC
is used [11, 12].

Parametrized surface representation can be recovered by more advanced tech-
niques, which provide theoretical guarantees about the recovered surface. Since
the seminal work of Amenta and Bern [13], a number of algorithms have been
proposed [14, 15, 16]. These methods differ in their performance, robustness to
noise and theoretical guarantees.

A number of approaches to volume mesh construction were suggested, that
are capable to operate on image date directly. We separate such methods into
the following two categories.

The methods from the first category do not require segmentation and cre-
ate meshes from the multi-value image data [17, 18]. The assumption is usually
made that the pixels which correspond to the same tissue have similar intensity,
and the object boundary can be defined by some isosurface value. Therefore,
these methods attempt to minimize the error of approximating this isosurface,
while maintaining good quality of the mesh tetrahedra. Such approach to mesh
generation is very practical for volume rendering and certain FEM applications.
However, brain segmentation is one of the very challenging problems in im-
age segmentation, which cannot be solved by thresholding only [19, 8]. Direct
isosurface-based meshing of the brain volume from the multivalued image may
lead to large errors in the surface recovery.

The second category of the image-based mesh generation methods operate on
binary images, produced by specialized image segmentation algorithms. Among
the methods in this category we separate four groups.
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The methods in the first group attempt to recover the surface of the object
at the level of voxel resolution [20, 21, 22]. Therefore, we call those techniques
voxel-based meshing. The sizes of surface triangles in the meshes constructed
using this approach are comparable with the size of voxels, i.e., the surface
triangulation is not adaptive. The use of such techniques is problematic for our
application, because the control over the element size is limited due to the fixed
high resolution of the surface discretization.

A large number of methods that are based on space-tree decompositions have
been proposed recently for meshing binary images. Conceptually, this approach
has a long history in classical mesh generation. Yerry and Shephard [23] were
some of the first to present an octree-based approach to 3-d mesh generation.
Mitchell and Vavasis [24] describe a quadtree-based algorithm with theoretical
bounds on the mesh size. These ideas have been adopted to construct tetrahedral
meshes from binary images [25, 26, 27]. Such methods recover the surface by
finding the points of intersection of the adaptive space-tree with the surface
of the object defined as a binary image. Mesh quality near the surface can be
compromised, as the newly inserted mesh nodes can be arbitrarily close to the
existing nodes. Mesh optimization [28] is commonly used as a post-processing
step. In practice, the methods from this group are well-suited for meshing binary
images, and were shown to be quite effective for a number of medical applications.
Some of these methods were designed and evaluated on the segmented brain MRI
data [25, 26, 27], which is the geometry used in our application. However, the
control over the customized element sizing is usually very limited, and has not
been evaluated previously.

The methods based on surface matching use a template volume mesh, which
is warped to match the surface of the modeled object [29]. While the advantages
of this approach are good surface fidelity, control over the mesh size and high
speed, the quality of the elements undergoing deformation during warping can
be compromised. Mesh optimization is a commonly used post-processing step
for the methods in this group. This concept is most suitable for meshing objects
that have very similar geometries. The geometry of ICC is quite similar between
different subjects. However, the mesh element sizing depends on criteria R1-3,
which are case-specific. Therefore, it is not feasible to construct a single template
mesh for our application to satisfy case-dependent distributions.

Representation of the object as a binary image conveniently lends itself to
the construction of an implicit function describing the object surface. Implicit
function is a mapping φ : R

3 �→ R, and the object surface is defined as the kth
level set of this function, φ(x) = k. An approximation of the implicit function
representing the object surface can be easily obtained by computing the distance
transform on the binary image [27], and using the zero level set as a surface
definition. A number of volume mesh generation methods have been introduced
recently to mesh implicitly defined surfaces [30, 31].

Overall, we observe that a great variety of methods for tetrahedral meshing
of binary images have been developed. Most of these methods were proposed
and evaluated in the context of their fitness to a specific application. Little or no
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attention is usually paid to the comparison of the newly proposed techniques with
the existing methods, and few implementations are available to conduct such
an evaluation by external groups. Also, most of the effort is usually directed to
developing a method that delivers good practical results, and not on establishing
theoretical guarantees about the produced meshes. The lack of such guarantees
makes it even more difficult to select the most appropriate algorithm from the
range of seemingly similar methods.

With the specific application we target, our goal is first to derive the pre-
cise requirements to mesh generation. These requirements can then be used to
customize and evaluate readily available, established methods to address the
problem of mesh generation for the NRR application. The results of such evalu-
ation can be used next to identify problems within the existing approaches and
justify the development of new mesh generation methods for this application.
However, before such necessity is justified, we believe the possibility of using
existing off-the-shelf tools must be carefully examined.

4 Methodology

4.1 Mesh Generation Tools

We evaluate three conceptually different approaches to constructing tetrahedral
meshes from binary images. Common to all these methods is their ability to
adjust the mesh element size locally according to the value of sizing function, or
local refinement rules.

Tetgen is an implementation of the Delaunay mesh generation and refinement
algorithm by Si [32]. This method is accompanied by the proof of termination
and bounds on the circumradius to shortest edge ratio. The implementation
has a number of very practical features: it accepts user-defined sizing function,
the exterior boundaries are refined simultaneously with the volume and “... are
never over-refined” [32]. The size of the mesh can be controlled by the alpha
parameters, which are not part of the basic Delaunay refinement [32]. We used
Tetgen version 1.4.2. The implementation works with the input surface defined
as a piecewise linear complex (PLC).

NETGEN is an advancing front mesh generator developed by Shöberl [33].
We used version 4.5rc2 of the code. The implementation can be used to construct
both surface triangulations of the parametrized surfaces, and adaptive volume
tetrahedralizations. It gives the user some control over the mesh grading, its im-
plementation is accompanied by a GUI environment, and the acceptable inputs
include triangulated surface of the domain.

RGM is a space-tree based mesher we presented earlier [27] that works di-
rectly on binary image data. Our implementation is based on the algorithm of
Molino et al. [30], which builds a mesh from the implicit definition of the do-
main. RGM is designed to work directly with the binary image, and we use the
Mesquite [34] mesh optimization library to improve the mesh quality following
the surface recovery. We used slightly modified version compared to the code
available online. Specifically, we use Mesquite instead of GRUMMP for mesh
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optimization, and implement a custom subdivision rule, as described in the next
section.

Both Tetgen and NETGEN require parametrized surface representation. We
use implicit surface meshing method by Boissonnat and Oudot [16] implemented
in the Surface mesh generation package of CGAL [35]. The implementation gen-
erates adaptive triangular surface directly from the binary image. The guarantees
of approximation accuracy and surface quality are provided. All the interaction
with the image data is done via the Insight Toolkit (ITK) [36]1.

4.2 Adaptive Mesh Generation

A sizing function H(p) > 0 specifies the desired length of edges at point p [32]. It
can be defined analytically, or, more often, its values are prescribed at the vertices
of a background mesh. The value of sizing at the non-vertex locations can then be
derived by interpolation. Both Tetgen and NETGEN accept background mesh
to control local mesh size. We use the sizing function defined at the vertices
of a background mesh to address the application-specific requirements to mesh
generation.

We use the same CGAL-recovered surface mesh for both background mesh
and the mesh used in FEM calculations. The background mesh is built using
Tetgen, with the small uniform bound on the tetrahedron volume. The sizing
value at each mesh vertex was initialized with the distance to the kth registration
point closest to it, to reflect the density of the registration point distribution.
The idea here is that the shape of a perfect mesh vertex cell complex is close to
a ball with the radius prescribed by the background mesh. We use CGAL [35]
k-neighbor search to find the k closest registration points and the distance to
the furthest point for each background mesh vertex. The process of background
mesh initialization is parametrized by the number of closest registration points
k. Our goal was to have around 30 registration points in the cell complex of
each vertex. However, based on the experimental results, the mean value in
distribution of the registration points both for Tetgen and NETGEN was not
approaching the desired bound when we set k = 30. Experimentally, we arrived
at a result that the best distribution is obtained by using larger values for k (we
used k = 100), and adjusting the Tetgen mesh by reducing the alpha parameters
of the implementation, see [32]. The NETGEN mesh was constructed using the
same background mesh, but the sizing values were scaled down by constant to
have similar number of nodes compared to the adaptive Tetgen mesh.

The sizing of the adaptive mesh constructed with RGM was controlled by a
custom subdivision function. This function is called for each tetrahedron during
the refinement at each mesh resolution, and returns true if the tetrahedron
1 Off-the-shelf software tools we used (links valid as of July 15, 2008): Tetgen:
http://tetgen.berlios.de/, NETGEN : http://www.hpfem.jku.at/netgen/,
RGM : http://www.na-mic.org/svn/NAMICSandBox/trunk/
TetrahedralMeshGeneration/, CGAL: http://cgal.org/, ITK: http://itk.org/,
VTK: http://vtk.org/, Paraview: http://paraview.org.
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requires subdivision. We calculate the number of registration points inside the
cells of the four tetrahedron vertices. The tetrahedron is refined if the number
of the registration points in each vertex cell exceeds parameter n. We used two
subdivision resolutions in all cases. The process of adaptive mesh construction
with RGM is parametrized by the value of constant n, and the spacing of the
initial lattice, see [27]. These parameters were experimentally chosen so that
the size of the adaptive mesh (the number of mesh vertices) is approximately
the same as the size of the adaptive Tetgen mesh.

4.3 Evaluation

We compare two sets of meshes constructed with each of the evaluated methods,
i.e., with and without using custom mesh sizing. The meshes are used to register
real MRI subject to synthetic deformations. We use synthetically deformed im-
ages, because the true deformation field (the ground truth deformation) cannot
be recovered in the real IGNS cases, and the registration accuracy cannot be
evaluated at an arbitrary image location. The ability to assess the registration
error is essential for our evaluation. We provide the details on the generation of
the synthetic deformation field in [37].

We try to create meshes with the similar number of vertices within each
group (uniform and adaptive), and compare them using a set of quantitative
metrics. There are two groups of metrics we use. The first group includes the
mesh properties, which can be directly optimized during the process of mesh
construction. These include element shape and surface approximation accuracy.
We assess the element shape by the minimum dihedral angle for each tetrahedron
of the mesh. Surface approximation accuracy is evaluated as the percentage of
the registration points covered by the mesh, which is a practical measure for the
NRR application.

The second group includes quantitative metrics, which cannot be directly
optimized by the existing mesh generation methods. Let D̄i be the ground truth
displacement at the registration point i, which aligns given point in the floating
image with the corresponding point in the target image. This value is known
to us, because the true deformation field is synthetic. We define the following
application-specific quantitative metrics:

1. Approximation error at a registration point is defined as ‖Di −HUi‖. We
assess the accuracy of approximation by the percentage of the registration
points, where the magnitude of this error exceeds 1.0. We call those registra-
tion points “error points”, while reporting results (errors below this threshold
are in the sub-voxel range).

2. Outlier detection sensitivity, defined as the ratio of the true outliers within
the discarded registration points to the total number of the discarded reg-
istration points. The true outlier is defined as a registration point, where
‖TiDi − D̄i‖ > 1.0.
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3. RMS of the absolute error at the registration points, absolute error being
defined as ‖HUi − D̄i‖.

4. Distribution of the registration points with respect to mesh vertices.

Note that the goal of the study was not to tune the NRR parameters to get
the optimal registration results. We attempt to perform a controlled study of
the impact of mesh generation on the NRR performance, while keeping fixed the
other parameters that can influence registration accuracy.

5 Results

We constructed synthetic deformation fields and performed NRR on the MRI
scans 1 through 3 in the set of 18 images available from the Internet Brain Seg-
mentation Repository (IBSR)2. The synthetic deformations were generated with
20 “knots” in the deformation grid on average [37]. The deformation magnitude
at each “knot” was under 5% of the brain size to maintain the validity of the
linear elastic physical model [5, 1].

The parameters used for CGAL surface mesh generation [35] were: angular
bound 30◦, surface radius and distance bounds 10.0, surface precision bound
0.001. Each method was used to construct two meshes for each registration case.
The prescribed element size was uniform throughout the volume of the first
mesh. The second mesh was constructed to adapt the element size according
to the sizing function designed in Section 4.2. We adjusted the implementation-
specific parameters to have the uniform and adaptive meshes with approximately
1.5k and 6k vertices, respectively.

Figure 2 shows cross-sections of the adaptive meshes. The adaptive meshes
generated with NETGEN have a layer of relatively large elements near the
surface of the mesh. This is explained by the nature of the Advancing Front
algorithm, which does not insert new points on the triangulated surface. We
explored the option to use the CGAL triangulation as the support surface, and
instructed NETGEN to construct a new triangulation to respect the prescribed
element sizing. However, the re-triangulated surfaces contained small triangles,
which did not obey the prescribed edge sizing.

None of the meshes contained sliver elements. We observed, that the minimum
dihedral angle was the largest, 14◦, in the NETGEN -generated meshes. The
values of this metric for Tetgen and RGM were 8◦ and 5◦ respectively.

The synthetic registration cases differ in the number of registration points,
and in the number of true outliers. Moreover, because of the differences in mesh
surfaces recovered by CGAL and RGM respectively, different percentage of those
points are located inside the mesh domain, as summarized in Table 1. This is an
important observation, because the percentage of outliers impacts the registra-
tion error, which is also used in the evaluation. Also, due to the lower precision
2 The MR brain data sets were provided by the Center for Morphometric Analysis at

Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/.
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Fig. 2. Left to right: selected registration points, and adaptive tetrahedral mesh cuts
(same slice) generated with Tetgen, NETGEN , and RGM . Tetrahedra are colored
according to their volume, from blue (smallest) to red (largest).

Table 1. Registration points, true outliers, and their coverage by the mesh surfaces

case id reg. points outliers,% reg. points inside,% outliers inside,%
CGAL RGM CGAL RGM

IBSR01 56447 7.8% 95.6% 91.1% 6.9% 5.5%
IBSR02 57526 16.2% 94.9% 90.8% 14.3% 12.4%
IBSR03 46525 18.8% 95.3% 90.5% 16.0% 13.1%

Table 2. Min/average/max of registration points per mesh vertex cell complex

case id uniform-graded meshes adaptive meshes
Tetgen NETGEN RGM Tetgen NETGEN RGM

IBSR01 0/135/460 0/137/715 0/130/390 0/36/111 0/36/432 0/33/277
IBSR02 0/131/479 0/136/667 0/124/374 0/35/118 0/35/444 0/30/168
IBSR03 0/127/408 0/126/611 0/121/345 0/27/87 0/27/320 0/28/254

of surface approximation by RGM , about 4% fewer registration points and 1%
to 3% fewer outliers are located within the RGM -generated meshes. The dis-
tribution of outliers is non-uniform, and many of them are located close to the
surface.

Based on the results presented in Table 2 and Figure 3, the use of custom mesh
sizing can significantly improve the distribution of registration points compared
to uniform-sized meshes. In conjunction with the sizing function, Tetgen achieves
the best distribution results overall. Although the average values for the distri-
butions are similar for all meshes, Tetgen meshes have lower maximum values
and better distribution: the distribution curve approaches normal distribution
with the mean close to the desired number (k = 30). The advantage of Tetgen
over NETGEN is that mesh points can be inserted at arbitrary locations on
the surface during refinement. RGM is limited even more than NETGEN , as
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Fig. 3. Distribution of the number of registration points per mesh vertex: uniform-
graded meshes (left) and adaptive refined meshes (right); IBSR01

Table 3. Application-specific metrics for the evaluated meshes

case id metric uniform size meshes adaptive meshes
Tetgen NETGEN RGM Tetgen NETGEN RGM

IBSR01 mesh points 1617 1596 1607 6044 6020 6209
error points 2.4% 2.6% 1.9% 1.6% 1.8% 1.1%
sensitivity 53.5% 52.6% 43.8% 52.3% 52.5% 42.8%
RMS error 1.60 1.62 1.61 1.69 1.65 1.60

IBSR02 mesh points 1682 1617 1696 6166 6255 6993
error points 6.7% 7.1% 5.9% 4.9% 5.8% 4.3%
sensitivity 64.7% 64.4% 59.4% 63% 64.7% 60.5%
RMS error 1.98 1.92 1.82 2.55 2.27 2.23

IBSR03 mesh points 1410 1413 1404 6631 6503 6033
error points 7.7% 8.1% 6.3% 4.8% 6.4% 4.5%
sensitivity 72.9% 71.2% 65.7% 70.7% 74.6% 69.3%
RMS error 2.61 2.53 2.25 3.52 3.08 3.05

new points can be inserted only at the periodic predefined locations, based on
the initial lattice structure. Nevertheless, the distributions in RGM meshes are
consistently better compared with NETGEN . This might be caused by large
elements near the surface of the NETGEN meshes.

Note that empty vertex cells do not pose a problem. The corresponding mesh
nodes will move following the neighboring vertices during registration. Problems
can be caused by few registration points (the contribution of outliers is not
smoothed by the correctly recovered displacements), or by very large number of
registration points in the cell (increased approximation error).

The non-rigid registration was performed with the default parameters sug-
gested by Clatz et al. [1]. The quantitative metrics that are not directly optimized
by mesh generation are summarized in Table 3. The approximation accuracy is
consistently improved for all mesh generation methods when the refined meshes
are used. However, this is the only metric that is clearly connected with the size
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Fig. 4. Left: Image voxels with the largest values of the error with respect to ground
truth. Center: mesh elements with the minimum eigenvalue of the dilation matrix
below 0.1. Right: inverted mesh elements after NRR. IBSR02, Tetgen adaptive mesh,
wireframe shows the undeformed mesh.

of the elements of the mesh. We do not observe improvement in either outlier
detection sensitivity or RMS of the registration error. On the contrary, RMS
error is increasing in the refined meshes. We suggest that there are two major
reasons why this may be the case.

First, the adaptively refined meshes are more susceptible to the element inver-
sion during NRR. The areas of the high error in the deformation field recovered
by NRR are spatially co-located with the areas of the mesh, where tetrahedra
invert or become highly skewed. We use the tetrahedron measure proposed by
Baker [38] and identify highly skewed mesh elements by the minimum eigenvalue
of the element dilation matrix. Figure 4 shows spatial correlation of the loca-
tions of skewed and inverted elements with the areas of image with the largest
registration error.

Second, refined meshes decrease the error of approximating displacements re-
covered by block matching both at the outlier and non-outlier registration points.
Ideally, the mesh should be constructed in such a way that in each mesh vertex
cell the number of outliers is less than the number of correct displacements. In
general outliers are distributed non-uniformly. As we decrease the size of the
mesh elements, it becomes more likely that the registration points inside some
cells will be dominated by the outliers, causing higher error with respect to the
true deformation.

We tried to resolve the first problem by modifying the sizing function to re-
flect the deformation magnitude averaged over the k closest registration points.
The parameters for CGAL surface mesh recovery were chosen according to the
maximum of the averaged deformation magnitude near the object surface. None
of the evaluated meshers was able to follow the prescribed sizing distribution
closely. Both Tetgen and NETGEN created large tetrahedra near the mesh sur-
face. We cannot attempt to improve the fitness of the mesh to the sizing function
by reducing the default values of the alpha parameters, as we have done for the
meshes evaluated previously. The alpha parameters control the bound on the
shortest edge length at a mesh point, see Lemma 1 by Si [32]. Their reduction
introduces small volume elements. The construction of meshes that adapt to the
degree of deformation requires further study.
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6 Discussion

In this section we summarize our quantitative and qualitative analysis for each
of the six major requirements identified for the NRR application.

R1: Equi-distribution of the registration points. We were not able to achieve equi-
distribution, which may be an NP-hard problem. However, in all cases, the use of
custom sizing function significantly improved that distribution. The mean values
for the number of registration points were close for all meshes. In all test cases,
meshes constructed with Tetgen had lower values of the maximum number of
registration points and better distribution overall.

R2: Reduction of the approximation error at registration points. In the general
case, approximation error can be reduced by refining the mesh. This is observed
in Table 3 when comparing uniform and adaptive meshes. Further refinement
is problematic, as it would violate the requirement R1. When comparing the
meshes with respect to the number of error points, we observe that this number
is consistently lower for Tetgen vs. NETGEN . Because Tetgen better follows the
values of sizing, it creates smaller elements in the areas with high registration
point density. Therefore, the approximation error will also be reduced for the
points in those areas. RGM has consistently the lowest number of error points.
This can be explained, because there are fewer registration points located inside
the mesh, while the mesh sizes are comparable with the Tetgen and NETGEN
counterpart meshes.

R3: Prevention of tetrahedra inversion. Tetrahedra inversion can be prevented by
increasing the size of the mesh elements. This goes contrary to what is required
by the requirements R1 and R2. Moreover, it is not clear what should be the
optimum element size to avoid inversion. The balancing of this requirements
with R1 and R2 is the subject of future work.

R4: Object surface approximation accuracy. CGAL implicit surface recovery pro-
cedure was used to construct surface triangulations for Tetgen and NETGEN .
This allows to control over both the surface approximation accuracy and the
angles in surface triangulation. The distribution of registration points is highly
non-uniform, and is more dense in the areas of the prominent features of the
brain, cortex being one of those areas. Poor surface approximation accuracy
discards registration points located in the cortex area.

R5: Mesh size optimality. The number of vertices in the meshes we constructed
were adjusted using the custom parameters for mesh generation in each par-
ticular case. However, given the similar number of mesh vertices, the evaluated
meshes perform differently with respect to the quantitative metrics we compared.
An important practical concern is the ability to control the total size of the mesh.
Based on our experience, Tetgen is the most flexible in this respect. In order to
control the size of the mesh with NETGEN , the sizing values at the background
mesh vertices should be scaled. Moreover, the size of the elements near the
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surface is very hard to control. The size of the RGM mesh can be changed by
varying the size of the initial lattice, and by parametrizing the refinement rules,
which is not straightforward in practice (e.g., changing the number of the maxi-
mum registration points for the tetrahedron vertex cells, which can only be done
in integer increments).

R6: Control over minimum dihedral angle. Based on our experimental data,
the meshes produced by all three methods are very similar when judged by
the distribution of minimum dihedral angle. NETGEN produces meshes with
the relatively largest values of the minimum dihedral angle. However, all of the
compared meshes had minimum angle larger than 5◦, which is an acceptable
value for the stiffness matrix calculations.

In summary, we were able to address all of the application-specific require-
ments except R3 using the off-the-shelf mesh generation tools. Custom sizing
function was essential to meet requirements R1 and R2. Among the evaluated
meshing tools, the Delaunay-based approach provides best theoretical guaran-
tees, best practical results, and is the most flexible in the mesh size control. At
the same time, the RMS error values, which are the metrics of the most practical
relevance, are very similar for all the evaluated methods.

The open questions related to this study are the following: (1) construction of
the sizing function, which balances the conflicting requirements, and gives the
ability to assign weights according to their importance; (2) improved fitness of
the generated meshes to the desired mesh sizing, and studying the guarantees
of such fitness; (3) further evaluation of the impact of the mesh on the error of
registration with respect to the ground truth.
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